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1 Introduction

This document explains in detail the statistical approach of the main paper. All the analyses are conducted
with R (R Core Team, 2021) and all scripts are available on the Open Science Framework repository.

e Section 2 presents the full dataset description with all extracted variables. Despite only a subset of
these variables being used to compute the meta-analysis model, we reported all extracted study-level
information.

e Section 3 describes the computation of the effect size measure and the sampling variance.

e Section 4 describes the main meta-analysis model presented in the paper together with modeling
alternatives

e Section 5 describes the correlations imputation that is necessary to compute the meta-analysis model

e Section 7 presents the sensitivity analysis for different correlations values and different meta-analytic
models

1.1 Meta-analysis

The meta-analysis is the statistical procedure to combine information from already conducted studies. The
core aspect of a meta-analysis is weighting each included effect according to the amount of information (i.e.,
precision) that the study provides. In order to compute a meta-analysis model we need:

e The effect size measure
e The effect size sampling variance
e The meta-analysis model

1.2 Papers

Almost all published papers reported enough information to calculate the effect size. Di Lieto and colleagues
(2020) provided us with raw data to calculate all relevant parameters. They use a design with three time
points (T0 = pre, T1 = post, and T2 = follow-up) for both the experimental and control group. Furthermore,
they measured several different outcome measures. To include the paper in our meta-analysis we performed
these processing steps:

e We selected only the TO and T1 to have a single pre-post measure

o We included all participants that have both time points (T0O and T1) in at least one outcome measure.
For example, if a child has T0 and T1 for the outcome x but only TO for the outcome y we keep the
child in the analysis. This creates a situation where different outcomes have different sample sizes but
maximize the amount of available information instead of including children with all outcomes.

2 Dataset description

The main dataset can be found on the online OSF repository under data/raw/meta_table_cleaned.csv.
The following list describes the meaning of each column:

e paper: Unique id for every paper

e paper__id: Unique id for every paper with authors and year

e author: Paper’s authors

e year: Publication year

o Participants: Participants’ characteristics: ST (typical development), SA (atypical development)
e n__ EX: Sample size for the experimental group

e n_ CT: Sample size for the control group

e male_ EX: Number of males for the experimental group

o female_EX: Number of females for the experimental group
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e male_ CT: Number of males for the control group

e female_ CT: Number of females for the control group

e Training_length: Lenght of the training (in weeks)

e Minute_ Training_length: Lenght of a single training session (in minutes)

o Training Mode: Type of training activity: CV (Virtual Coding), ER (Educational Robotics)

e Training  CV_ Type: Types of virtual coding activities: structured and unstructured

« M_SES__EX: Mean socio-economic status (SES) for the experimental group

o SD_SES__EX: Standard deviation of socio-economic status (SES) for the experimental group

« M__SES_ CT: Mean socio-economic status (SES) for the control group

o SD_SES_ CT: Standard deviation of socio-economic status (SES) for the control group

e M_ age CT: Mean age for the control group

e M_ age EX: Mean age for the experimental group

o outcome: The outcome measure/test used

e M_ pre_ EX: Mean pre-training score for the experimental group

e M_ post_ EX: Mean post-training score for the experimental group

e« SD_ pre_ EX: Standard deviation pre-training score for the experimental group

e SD_ post_ EX: Standard deviation post-training score for the experimental group

e M_ pre_ CT: Mean pre-training score for the control group

e M_ post_ CT: Mean post-training score for the control group

e SD_ pre_ CT: Standard deviation pre-training score for the control group

e« SD_ post_ CT: Standard deviation post-training score for the control group

o outcome2: The recoded outcome variable

o Flip_ NoFlip: Whether the effect size need to be flipped in order to have the same direction (i.e.,
positive values, the training improve performance)

o eff size: The computed dpce,

o eff size_ var: The computed dpcc, variance

o eff size_se: The computed dpcc, standard error

2.1 Pre-processing steps

The raw dataset is available on the online Open Science Framework repository. We performed these minimal
pre-processing steps:

e renaming relevant columns

« re-coding the outcome variable into the outcome2 variable (see the main paper for the rationale)
« separating the Arfé et al. (2019) paper into two separate papers (see Section 2.1.1)

e converting outcomes names into English

2.1.1 Arfé et al. (2019)

Arfe et al. (2019) is the only paper that contains multiple independent (i.e., with different participants)
sub-studies creating a multilevel structure. To reduce the data complexity we decided to consider these
studies as two independent papers, creating Arfe et al. (2019a) and Arfe et al. (2019b).

2.2 Multiple effects for the same outcome

We decided to transform the outcome into the outcome2 variable to have a smaller set of outcomes according
to the underlying psychological construct. For example, if the test x and the test y are Working Memory
measures we created a unique Working Memory variable. This reduces the dataset complexity but creates
a situation where papers have multiple effects belonging to the same outcome. We decided to aggregate
multiple effects of the same outcome2 using the approach suggested by Borenstein et al. (2009, pp. 225-233)
implemented using the metafor: :aggregate.escalc() function (see https://wviechtb.github.io/metafor/r
eference/aggregate.escalc.html). To note, we use a slightly different approach compared to Borenstein et
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al.(2009, pp. 225-233) computing an inverse-variance weighted average instead of an un-weighted average.
Essentially, the weighted average combines multiple effect sizes taking into account the precision (i.e., the
inverse of the variance).

We used the metafor: :aggregate.escalc() as follows:

aggregate_effects <- function(data, rho, paper, TRUE) {
split_by <- rlang::enexpr(split_by)
data <- metafor::escalc( eff_size, eff_size_var,
c("eff_size", "eff_size_var"),
data)

dat_split <- split(data, pull(data, !!split_by))
dat_split <- purrr::map_dfr(dat_split, function(x) {
metafor: :aggregate.escalc(x,
outcome?2,
rho,
weighted)

1))
bind_rows(dat_split) %>% tibble()
}

This is a wrapper of the metafor: :aggregate.escalc() function that splits the dataset according to the
paper and then aggregates within each outcome2.

3 Effect size computation

All included studies used a Pretest-Posttest-Control Group (PPC) design where the treated group is compared
with an age-matched control group before and after a certain treatment. Morris (2008) described different
effect size indexes for the PPC design. We decided to use the d,,,., index because it provides an unbiased
estimation of the true effect size and the sampling variance can be analytically computed. The d is
calculated as indicated in Equation (1).

ppc2

(MT,post - MT,pTe) - (MC,post - MC,pre)

dpper = € SD

(1)

pooled,pre

The numerator describes the actual mean difference between the treated and control groups of the respective
pre-post scores. The difference is standardized using only a pooled standard deviation of pre-test scores. The
variance is calculated in Equation (2):
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Both the d,,,.» and the variance are adjusted using a small sample correction factor ¢, calculated in Equation
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Positive effect size values mean that the treatment increased the experimental group’s performance. However,
for some measures, higher values correspond to worse performance (e.g., the number of errors). In this case,
we computed the effect size as described in the previous section and then we flipped the sign obtaining the
same interpretation regardless of the original measure.



For the actual computation we wrote two functions following the documentation of the metafor package:
(http://www.metafor-project.org/doku.php/analyses:morris2008), get_dppc2():

get_dppc2 <- function(mt_pre, mt_post, mc_pre, mc_post,
st_pre, st_post, sc_pre, sc_post,
nt, nc){

mdiff <- (mt_post - mt_pre) - (mc_post - mc_pre)
poolvar <- sqrt(((((nt - 1) * st_pre~™2) + ((nc - 1) * sc_pre”2)) / (nt + nc - 2)))
cp <- metafor:::.cmicalc(nt + nc - 2)

dppc2 <- (mdiff / poolvar) * cp
return(dppc2)

}

and get_dppc2_var():
get_dppc2_var <- function(dppc2, nt, nc, rho){

dppc2_var <- 2x(1-rho) * (1/nt + 1/nc) + dppc2”2 / (2x(nt + nc))

return(dppc2_var)

4 Meta-analysis models

4.1 Univariate vs multivariate model

When multiple variables are collected from the same pool of participants (e.g., multiple outcomes studies)
and/or there are multiple experiments within the same paper, the effect size cannot be considered independent
(Cheung, 2014, 2019). Instead of pooling multiple effects into a single measure or keeping only a single effect,
we computed a multivariate meta-analysis model taking into account the dependency (i.e., the correlation)
between multiple effect sizes calculated on the same pool of participants. To compute the multivariate model
we need to include or impute the variance-covariance matrix that describes how multiple effects correlate
within each study. The section 5 explains our imputation approach.

4.2 Randome-effect vs fixed-effect model

Another important choice is between the fixed-effect and the random-effect model. Under the fixed-effect
model, we make the assumption of a single true effect size that is estimated by a sample of studies. For this
reason, the variability observed in the empirical meta-analysis is only caused by the sampling error.

On the other side, the random-effect model assumes a distribution of true effects. The model estimate the
average effect (the mean of the distribution) and the between-study heterogeneity 72 (i.e., the variance
of the distribution). The critical assumption is that the observed heterogeneity is composed of sampling
variability (as the fized-effect model) and true between-study variability. The latter can be caused by
different experimental designs, participants’ features, or other study-level variables and can be explained
using moderators (i.e., meta-regression).

The goal of the random-effect model is to generalize the meta-analytic findings at the population level while
the fized-effect model is focused on a specific pool of studies.
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We decided to use a fived-effect model for several reasons. Firstly, one reason to estimate 72 (i.e., the focus
of the random-effect model) is to explain the observed heterogeneity with study-level variables. Given our
limited pool of studies, we did not include a meta-regression analysis. Furthermore, Under the random-effect
framework, the multivariate model estimates the average effect and the variability (72) for each included
outcome increasing the model complexity compared to the univariate counterpart. Crucially, with a limited
number of studies the 72 estimation can be strongly biased (Veroniki et al., 2016) influencing also the pooled
effect estimation (Borenstein et al., 2009, pp. 73-75) especially in terms of the standard error. Finally, the
fized-effect is less complex in terms of model parameters because we need to estimate only the average effect
of each included outcome, taking into account the statistical dependency (see 4.1).

4.3 Modelling functions

We tested each model parameter (i.e., average effect for a specific outcome) using the Wald z-test with
a = 0.05.
For the univariate fized-effect model we use the metafor: :rma() function:

fit_uni_fixed <- function(data){
rma eff_size,
eff_size_var,
"FE",
data)
}

For the univariate random-effect model we use the metafor: :rma() function and the REML estimator for

72

fit_uni_random <- function(data){
rma ( eff_size,
eff size_var,
"REML",
data)
¥

For the multivariate fized-effect model we use the metafor: :rma.mv() function:

fit_multi_fixed <- function(data, cov_matrix){
rma.mv (
eff size,
cov_matrix,
~ 0 + outcome2,

data)
}
For the multivariate random-effect model we use the metafor: :rma.mv() function:
fit_multi_random <- function(data, cov_matrix, "UN"){
rma.mv(
eff_size,

cov_matrix,
~ 0 + outcome?2,
~ outcome?2|paper_id,
# the wvartance-covariance matrixz structure
# see https://wviechtb.github.io/metafor/reference/rma.mv.html
struct,



data)
}

In both the multivariate cases we used the outcome2 variable as a moderator with a cell-mean parametrization
(Schad et al., 2020) (i.e., removing the intercept 0 + outcome?2). In this way model parameters and statistical
tests correspond directly to the average effect for each outcome. As explained in the previous section, the
random-effect model estimate also a 72 for each outcome (written as random = ~ outcome2|paper_id, see
https://www.metafor-project.org/doku.php/analyses:berkey1995).

4.3.1 Variance-covariance matrix

For the multivariate models (both fixed and random) is necessary to include a variance-covariance matrix.
Essentially, each study has n different outcomes and we need a n x n variance-covariance matrices where the
diagonal is the d,,.., variance for a specific outcome and off-diagonal elements are the covariances between
pairs of outcomes.

Combining all study-level matrices we obtain a full block-variance-covariance matrix to use within the
rma.mv() function. The metafor::vcalc() (see https://wviechtb.github.io/metafor/reference/vcalc.html)
function allows to create the full matrix specifying the assumed correlation and a clustering variable:

get_block_cov_matrix <- function(data, rho){
vcalc(eff_size_var, paper_id, effect_id, data, rho)

}

5 Correlations imputation

As explained in previous sections, we decided to use a fized-effect multivariate model. To compute the model
we need to include 3 correlations measures:

o For the effect size computation, we need the correlation between pre-post (pre-post correlation) scores
for both groups

« For the aggregation of multiple effects within the same paper (aggregation correlation) (see Section 2.2)
we need the correlation between the effects

e For the actual multivariate model we need the full variance-covariance matrix of different outcomes. To
create the matrix we need to include the correlation between outcomes within each study (multivariate
correlation).

Correlations are rarely reported in published papers, thus we decided to impute these values and assess the
impact with a multiverse-like approach (Steegen et al., 2016). In particular, we used:

* A ppre_post 0f 0.5, 0.7 and 0.9
o A pgge0f0.3,0.5,0.7
o A pu 0f 0.3,0.5 and 0.7

6 Meta-analysis table
Table 1 describes all included papers with pre-post scores for the experimental and control groups and the

computed effect size. Furthermore, the table is organized grouping the effects according to the considered
outcome in order to highlight the multivariate data structure.
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Table 1: Pre-post scores (M = mean, SD = standard deviation, N
= sample size) for the control and experimental group. The last
two columns represent the computed effect size and the variance.
The effects are organized according to the outcome value and the
corresponding paper.

Experimental Group

Control Group

Outcome Paper N Mpre Mpost SDpre SDpost N Mpre Mpost SDpre SDpost dppcz(")
Cognitive  Flexibility DiLieto etal. (2020a) | 96 7.22 839 206 1.69 91 719 827 210 1.66 0.04 (0.01)
Ace. Di Lieto et al. (2020b) | 18 5.72  6.61 237 212 18 705 705 215 241 0.38 (0.07)

Arfé et al. (2019a) 44 463 179 445 201 36 576 416 436 3.72 0.21(0.02)
Arfé et al. (2019b) 19 403 158 380 1.81 19 374 282 279 227 0.46 (0.05)
Inhibition Acc. Arfé et al. (2020) 88 5.71 1.97  6.01 2.23 91 566 412 026 1.50 0.44 (0.01)
DiLieto etal. (2020a) | 96 572 339 462 342 91  4.61 302 353 3.13 0.14 (0.01)
Di Lieto et al. (2020b) | 18 8.16 650 7.64 6.14 18 658 538 439 6.66 0.06 (0.05)
Arfé et al. (2019a) 44 713 984 246 245 36 575 757 291 2.80 0.30 (0.02)
Planning Acc. Arfé et al. (2019b) 19 839 1142 351 2.60 19 892 855 323 329 0.99 (0.06)
Arfé et al. (2020) 88 6.02 959 2838 239 91 495 7.05 134 118 0.61(0.01)
Akcaoglu & Koehler 20 -1.11 -007 1.23 1.1 24 117 129 091 1.15 1.05 (0.05)
(2014)
Arfé et al. (2019a) 44 431 6.12 146 1.06 36 3.09 368 160 192 0.79 (0.03)
Arfé et al. (2019b) 19 605 716 1.08 096 19 558 521 117 1.08 1.29 (0.08)
Arfé et al. (2020) 88 390 58 145 0.87 91 357 374 0.08 0.08 1.75 (0.02)
Problem Solving Erol & Cirak (2022) 16 93.25 99.12 16.32 12.39 18 89.11 86.72 10.79 10.88 0.59 (0.08)
La Pagliaetal. (2017) | 30 5419 58.09 752 6.89 30 56.29 56.86 11.58 12.22 0.34 (0.04)
Nam et al. (2010) 30 955 1336 350 3.55 30 10.09 1150 3.16 284 0.71(0.04)
Nam et al. (2019) 25 2572 3716 629 3.88 28 26.79 29.75 507 6.33 1.47 (0.07)
Pardamean et al. 43 998 12,05 3.08 290 42 935 1076 202 323 0.26 (0.02)
(2011)

DiLieto etal. (2020a) | 96 3.34 493 192 231 91 315 423 176 1.90 0.26 (0.01)

Working Memory Acc.
DiLieto etal. (2020b) | 18 2.36 3.34 125 194 18 2.1 342 114 201 -0.21 (0.04)




7 Multiverse analysis

We assessed the impact of our modeling assumptions using a sensitivity analysis approach. In particular, we
considered:

¢ 4 meta-analysis models:
— univariate fized-effect
— univariate random-effect
— multivariate fized-effect
— multivariate random-effect
o All correlations combinations (30, post X 3Paggregation X SPmultivariate)

In this way, we computed 72 meta-analysis directly assessing the impact on the parameters estimation and
p-values'. All plots in the following pages depicted the sensitivity analysis for each outcome. Triangles
indicate parameters with p < 0.05 while points indicate parameters with p > 0.05. Red shapes indicate the
correlations/model combination included in the paper. Clearly, random effect models (both univariate and
multivariate) are associated with wider confidence intervals (i.e., less precise estimation) compared to fized
effect models.

LFor multivariate models (fized and random) we have 3x3x3 correlation combinations while for univariate models (fized and
random) only 3x3 (Ppre—post ad Pagq)
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